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We study the influence of pentagons and heptagons, dislocations, and other topological defects breaking the
sublattice symmetry on the magnetic properties of a graphene lattice. It is known that vacancies and other
defects involving uncoordinated atoms induce localized magnetic moments in the lattice. Within the Hubbard
model the total spin of the nonfrustrated lattice is equal to the number of uncoordinated atoms for any value of
the Coulomb repulsion U according to the Lieb theorem. With an unrestricted Hartree-Fock calculation of the
Hubbard model we show that the presence of a single pentagonal ring in a large lattice is enough to alter the
standard behavior and a critical value of U is needed to get the polarized ground state. Dislocations, Stone-
Wales, and similar defects are also studied.
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I. INTRODUCTION

The recent synthesis of a single layer of graphite1,2 and
the expectations of future nanoelectronics applications have
renewed the interest in graphitic materials. Among the pos-
sible exotic properties of graphene, magnetism is one of the
least studied and most appealing given the interest of poten-
tial applications of organic magnets. Ferromagnetic order en-
hanced by proton irradiation has been observed in graphite
samples3 and demonstrated to be due to the carbon atoms by
dichroism experiments.4 Ferromagnetism has also been re-
ported in carbon nanotubes induced by magnetic impurities5

and in honeycomb lattice arranges of first row elements.6 By
now it is clear that the underlying mechanism leading to
ferromagnetism in all carbon structures is the existence of
unpaired spins at defects induced by a change in the coordi-
nation of the carbon atoms �vacancies, edges, or related
defects�7 although the mechanism for the occurrence of long-
range magnetic order is still unknown.

The structure of disorder is crucial to explain the magne-
tism found in graphite samples. While local disorder has
been thoroughly investigated in graphene �see Ref. 8 for a
review and references therein� topological defects, where a
hexagonal ring of the graphene honeycomb lattice is re-
placed by another polygon, have been less pursued. The the-
oretical description of these defects in the continuum limit is
very old9–11 and their influence on the electronic and trans-
port properties of graphene has been studied recently in a
number of papers12–14 but their implications on the magnetic
structure have not been fully explored. Recent observations
of extraordinary mechanical stiffness coexisting with ripples
in large graphene samples15 point toward topological defects
as the main source of curvature.12,13 Nucleation of disloca-
tions in the fabrication of the samples by mechanical cleav-
age of graphite is practically unavoidable. These types of
defects have very recently been produced and observed with
transmission electron microscopy in suspended graphene
samples.16

Graphene is made of carbon atoms arranged in a two-
dimensional hexagonal lattice that can be seen as two inter-
penetrating triangular lattices A and B. It is the peculiar geo-
metric structure of the honeycomb lattice with two atoms per

unit cell that determines the very interesting low energy
properties of the system whose quasiparticles are massless
Dirac fermions in two dimensions.1 The graphene lattice is
an example of a bipartite lattice: it is made of two sets of
sites A and B and the coordination is such that atoms of
either set are only connected to atoms belonging to the op-
posite subset. In a beautiful paper concerning the magnetic
properties of the Hubbard model in bipartite lattices, Lieb17

proved a theorem stating that for a repulsive value of the
Hubbard interaction U the ground state of the half filled lat-
tice is nondegenerate and has a total spin equal to half the
number of unbalanced atoms: 2S=NA−NB. This rule has
been confirmed recently in a number of studies of graphene
with vacancies, edges, or larger defects18–25 and the Lieb
theorem17 has become a paradigm of magnetic studies in
graphene clusters and in nanographite. What is more inter-
esting, although the original theorem deals with the Hubbard
interaction, the rule seems to survive when more complicated
calculations such as ab initio, density functional, or molecu-
lar dynamics are performed.26–28 The purpose of this work is
to emphasize the fact that the crucial property that deter-
mines the magnetic behavior of the lattice is its bipartite
nature as it was already established in the original paper.17

Vacancies, islands, cracks, or whatever defects preserving
this property will in most cases obey the Lieb rule17 even if
the interactions go beyond the Hubbard model. We will show
that a slight frustration of the bipartite property is enough to
alter the rule.

We show that the ground state of the honeycomb lattice in
the presence of pentagonal, heptagonal rings or dislocations
�pentagon-heptagon pairs� deviates from the predictions of
Lieb’s theorem.17 In the classical configuration of a graphene
lattice with several vacancies of the same sublattice the total
spin of the ground state is half the number of unpaired sites
for any arbitrarily small value of the Hubbard repulsion U.
This behavior is due to the presence of zero energy states
generated by the unpaired electrons in the bipartite lattice
and their subsequent polarization when an electron-electron
interaction U is added.

In the presence of the topological defects discussed in this
work a finite critical value Uc is needed to reach the polar-
ized ground state. For values of U�Uc the total spin of the
ground state remains zero. Above the critical value of U the
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system is insensitive to the frustrating links and behaves as a
normal bipartite lattice. In the simplest case considered in
which we have a number of vacancies of the same sublattice
in the system and any number of them develops a pentagonal
ring, the critical value obtained to reach the polarized ground
state is similar to the critical U at which the perfect system
undergoes a phase transition from the semimetal to an anti-
ferromagnetic �AF� insulator.29,30

II. MODEL

We use a single band model for the � electrons of
graphene and perform a mean-field calculation of the Hub-
bard Hamiltonian,

H = − t �
�ij�,�

ci
+cj + U�

i

ni↑ni↓,

where �ij� stands for nearest neighbors of the honeycomb
lattice and � stands for the spin polarization. The tight-
binding model for the � orbitals is the simplest approach that
captures the electronic structure of graphene31 and mean-
field calculations of the Hubbard Hamiltonian are often in
good agreement with those obtained by density-functional
calculations in the honeycomb lattice.32,33

III. RESULTS I: PARTIALLY RECONSTRUCTED
VACANCIES

We begin by studying configurations of two vacancies
belonging to the same sublattice in a graphene sheet where in
one of them, two unpaired electrons have been joined by a
link forming a pentagon as shown in Fig. 1. This configura-
tion has been suggested to form naturally as the first step of
vacancy reconstruction34,35 and has also been shown to lower
the energy in density-functional studies of vacancies in irra-
diated graphite.36 It is the simplest situation to exemplify the
behavior that we want to emphasize.

Figure 1 shows the ground-state configurations for a value
of the Hubbard repulsion U=1 �throughout the paper U will
be measured in units of the hopping parameter t� for both the
pentagonal defect and the vacancy. The total spin of the

ground state in the standard configuration shown in the left
side of the figure is Sz=1, which accounts for half the two
impaired atoms of the same sublattice. The polarization for
each site of the lattice is represented by an arrow �its scale in
units of � is also shown adjacent to each figure�. We see a
relatively strong polarization localized at the atoms sur-
rounding the vacancy as expected. In the right-hand side of
Fig. 1 one of the vacancies has relaxed and formed a pen-
tagonal link that we model with a hopping t of the same
value as the rest of the lattice �this assumption is not impor-
tant to the results that remain the same if reasonably different
values of the pentagonal t are assumed�. This little frustration
of the sublattice order is enough to destroy the polarization
around the two vacancies and the total spin of the ground
state is zero. The structure presented in the figure corre-
sponds to a density of defects, vacancies in this case, of 1%,
which is large. We have performed the calculation with vari-
ous defect densities from 0.1 to 10−3 and the results remain
the same independent not only of the density of defects but
also of the relative distances among them. We have also
computed the case in which both vacancies have a pentago-
nal link and the results are the same: in the presence of at
least a pentagonal ring there is a critical value of U of ap-
proximately U�2 above which the spin of the ground state
recovers the full value Sz=1. To better appreciate the effect
of the pentagonal link we note that the critical U to polarize
the ground state for vacancies in the bipartite lattice is zero if
the density of vacancies is not too big. In the nonfrustrated
case there is also a transition from an unpolarized semimetal
with magnetic moments strongly localized at the positions of
the uncoordinated atoms surrounding the vacancy to a per-
fectly ordered antiferromagnetic state with two frozen holes
and with total spin determined by the unpaired electrons. The
low U configuration has been described by Lieb17 in the
original paper as an example of itinerant ferromagnetism and
the high U case as ferrimagnetism, where there is a perfect
antiferromagnetic order in a system with a nonzero total
spin. It is quite remarkable that the presence of a single link
frustrating the sublattice symmetry in a cluster or up to 3200
atoms is enough to rise the critical U to the rather high value
of U=2. As noted before, the critical value found in this case
is similar to the one that sets the semimetal–AF insulator
transition in the perfect system.

(b)(a)

FIG. 1. �Color online� Left: Spin distribution in a lattice with two vacancies of the same sublattice with U=1. Right: Same configuration
in the presence of a pentagon for the same value of U.
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In Fig. 2 we show the local density of states �DOS� for the
lattice configuration shown at the right-hand side of Fig. 1 at
a lattice site on the pentagonal defect. The upper �lower�
curve represents the density of electrons with spin up
�down�. The left of the figure corresponds to the unpolarized
ground state obtained for a value of U=1 and the right-hand
side shows the fully polarized system obtained with U=3.
The vertical line signals the position of the Fermi level
which is shifted from zero by the interaction U. We can see
that in the unpolarized situation the local DOS at the position
of the dangling bond is higher than in the case of the polar-
ized case.

IV. RESULTS II: DISLOCATIONS

Next we turn to the more interesting case of having dis-
locations in the lattice. Recent works on the elasticity in the
flat honeycomb lattice37 have demonstrated that two types of
dislocations are stable configurations: shuffle
dislocations—an octagon with a dangling bond—and the
more usual glide dislocations—made of a pentagon-heptagon
pair. These defects were described in Ref. 38 and experimen-
tal observations were reported in Ref. 39; dislocations have
also been observed very recently in graphene grown on Ir in
Ref. 40. The presence of dislocations can affect the magnetic
properties of the graphene samples in two ways: shuffle dis-
locations can nucleate local magnetic moments similar to the
ones induced by vacancies, while the structure of the glide

dislocations frustrates the bipartite nature of the lattice.
Dislocations of either type �glide or shuffle� add—or
suppress—a row of atoms to the lattice. In order to eliminate
the influence of the edges and perform the calculation with
periodic boundary conditions we introduce a pair of disloca-
tions such that the extra row begins in one and ends in the
other one. Figure 3 shows the basic structure discussed in
this work. The shuffle dislocation is made of an octagon with
an unpaired atom of a given sublattice. The dislocation line
ends in a glide dislocation made of a pentagon-heptagon pair.
This basic block does not alter the edges of the sample and
should behave like a single vacancy. We have checked that
indeed the total spin of the lattice for this configuration is
S=1 /2 for a critical value of U�0 showing that the dangling
bond of the shuffle dislocation behaves as a vacancy of the
other sublattice, that of its missing nearest neighbor. If a
vacancy of the same sublattice as the dangling bond atom is
added, the total spin of the system is zero in agreement with
Lieb’s theorem.17 When the additional vacancy belongs to
the opposite sublattice, a critical value of the interaction Uc
is needed to obtain the total spin S=1. For U�Uc the total
spin is zero. The situation is similar to the one discussed
previously with pentagons but in the case of the dislocations
there is a critical region in the parameter space U, 0.2�U
�1, where the fully polarized and the unpolarized ground
states are almost degenerate in energy and we find a coexist-
ence of both cases. In Fig. 3 we show the two spin configu-
rations obtained at a value of U=0.3 for two defects located
at the same relative distances on the lattice with total spin
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FIG. 2. Left: Local density of states at the vertex of the pentagon in the configuration given in Fig. 1, right for the spin up and down
electrons with U=1. Right: Same for U=3. The vertical line shows the position of the Fermi energy.

(b)(a)

FIG. 3. �Color online� Spin structure for two different configurations of dislocations and a vacancy with U=0.3 with total spin polar-
izations S=0 �left� and S=1 �right�.
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Sz=0 �left� and Sz=1 �right�. The critical region depends on
the density and on the relative positions of the defects and a
full phase diagram will be presented elsewhere. This situa-
tion points toward a first-order magnetic transition in the
presence of dislocations but this issue cannot be explored
with the techniques of the present work and will be studied
in the future with density-functional theory.

V. SUMMARY AND DISCUSSION

We end by a summary of the findings and some remarks.
We have shown that the nucleation of magnetic moments in
the graphene honeycomb lattice is severely modified by the
slightest frustration of the bipartite character of the lattice.
The most dramatic effect appears when considering standard
vacancies of the same sublattice. It is known that for values
of the defect density not exceeding a certain value of about
1%, the ground state of the system at half filling has maximal
spin given by the sublattice unbalance for any value of the
Hubbard U. This result has been proven to be quite robust
and to apply for interactions beyond the Hubbard model. We
have shown that the presence of a single link frustrating the
sublattice symmetry in a cluster of up to 3200 atoms is
enough to rise the critical U to a rather high value of U=2.
This critical value is similar to the one that induces an anti-
ferromagnetic instability in the perfect lattice estimated to be
in the mean field of the order of U�1.8 although the value
increases up to U�4.5 when more refined calculations are
done.29

We have explored a complete variety of situations with
several vacancies or with several shuffle dislocations acting
as sources of unpaired electrons and found the same results.
The presence of a single link joining two atoms of the same
sublattice �not necessarily forming a pentagon� is enough to
induce a finite critical value of Uc. In the case of more com-
plicated distributions of 5-7 rings like the ones discussed in
Fig. 3, the critical U state depends on the density and relative
position of the defects.

As was explicitly mentioned in the original paper by
Lieb17 the ferromagnetic properties of bipartite lattices such
as graphene are determined by the appearance of midgap
states associated to defects and to the electron-electron inter-
actions �U� within them. The perfect degeneracy of the zero
energy states induced by vacancies or voids belonging to the

same sublattice is broken by the inclusion of a frustrating
link and the interplay of kinetic energy and Coulomb repul-
sion becomes more subtle. The importance of the present
work relies on the fact that the frustrating topological defects
that we discuss have been observed in suspended graphene
samples16 and have to be taken into account when designing
prospective magnetic graphene devices. The role of these
defects in graphite should be similar and will be studied in
the future. The findings of this work are somehow negative
for the expectations to get magnetic graphene since the pres-
ence of 5-7 rings will always increase the critical value of U
needed to get a fully polarized ground state.

Stone-Wales �SW� defects made of two pentagon-
heptagon pairs �two glide disclinations with opposite Burgers
vectors� that are known to play a very important role in the
physics of fullerenes and carbon nanotubes have been shown
to be unstable in the flat lattice41 where they evolve to the
perfect lattice. Although they have almost no effect on the
electronic structure,37 their presence does alter the magnetic
structure of the unperturbed lattice in the way described in
this work due to the presence of odd-membered rings. Their
effect is similar to the pair of dislocations discussed in Sec.
IV: in a lattice configuration with a number of dangling
bonds of the same sublattice and in the presence of a SW
defect a finite critical value of U is needed to reach a fully
polarized ground state. This result agrees with the effect
studied in Ref. 42 where Stone-Wales defects were assumed
to be responsible for the destruction of the magnetization of
graphene with atomic hydrogen adsorbed. After the study
done in this work, we can anticipate that the same results
will be obtained if the SW defect is replaced by a single
pentagon, heptagon, or 5-7 configuration. Our results can
also be of importance in relation to the recent finding that
any edge defect spoils the metallicity of graphene
nanoribbons43 since dislocations always affect the edges of
the ribbons.
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